Pytorch DISN

Hee Hwang, Edward Schneeweiss, Catherine Huang
University of Massachusetts Amherst

@cs.umass.edu

Abstract

The task of reconstructing 3D shapes from single-view
images is a long-standing research problem and for good
reason, as there are many applications like robotics, map-
ping, modeling, etc. The Paper DISN: Deep Implicit Sur-
face Network for High-quality Single-view 3D Reconstruc-
tion, came to the field in 2019 and outperformed the state
of the art (SOTA) at the time due to some key changes. First
they utilized signed distance fields as it was shown that a
neural network can very effectively model a signed distance
field. This allowed them to densely sample points in key
areas without blowing out the memory, which can happen
when using explicit 3D representations like voxels, point
clouds or meshes. Secondly they allow their model to at-
tend to the specific region of the image where a sampled
point is located, which greatly improved their models abil-
ity to capture complex high detailed structure, better than a
global descriptor would allow them to. For our project we
replicated their results, and experimented with some model
changes.

1. Introduction

For our project we re-implemented the Paper DISN:
Deep Implicit Surface Network for High-quality Single-
view 3D Reconstruction, we replicated this paper because
it was one of the early papers to use a signed distance field
(SDF) to represent the 3D shape of an object, and the novel
approach from this paper produced results that surpassed
the SOTA at the time. The Challenge is to take in an RGB
image and output a SDF that represents the shape of the ob-
ject.

Up to when this paper was published many single-view
3D Reconstruction methods have been proposed where
deep learning based methods have achieved the best results.
To represent the 3D structure many of these methods uti-
lize either voxels [1 1], point clouds [2], meshes, or Occtrees
[5], because it is easy to represent them with a neural net-
work. However these representations are limited in terms
of resolution and their reconstruction loss. The resolution

is an obvious problem in that to get better accuracy you
must increase the resolution which in turn demands more
memory, so the accuracy of the model is limited by mem-
ory constraints. Additionally the losses for these models
are indirect since they will use Chamfer Distance (CD) and
Earth Mover Distance (EMD), which only approximately
measure shape similarity. To address the limitations of vox-
els, point clouds, and meshes, the authors of DISN use a
SDF to represent the 3D structure implicitly. Where the
neural network is a function that takes in a 3D point and
outputs the SDF value at that point. This solves both prob-
lems, firstly since the 3D shape is expressed explicitly the
resolution is infinite, and during training we can specifically
sample points near the surface of the object avoiding wasted
computation in empty space. Secondly the loss is direct, in
that we generate the SDF for a the ground truth mesh then
take the L1 loss between the ground truth SDF value and
the models predicted SDF value.

While many single-view 3D reconstruction methods
that learn a shape embedding from a 2D image are able to
capture the global shape properties, they have a tendency
to ignore details such as holes or thin structures. These
fine-grained details only occupy a small portion of the 3D
structure and thus sacrificing them does not incur a high
loss. To address this problem the authors of DISN introduce
a local feature extraction module, specifically they estimate
the viewpoint pose and can then project the sampled 3D
points onto the input image and extract the local features
to predict the SDF. This enables the model to learn the
relationship between projected pixels and 3D space, which
greatly improved the fine details of the reconstruction.

Our contributions:

e Their model was implemented in TensorFlow and to
rectify this we re-implemented it in PyTorch (the Su-
perior deep learning library).

* We also explored some modifications such as: global
features only and local features only. To show the im-
pact of combining local and global features for recon-
struction.

2. Related Works

The problem of reconstructing 3D structure from a 2D
image is a popular challenge and has had many compet-
ing approaches such as 3DN [9], Pix2Mesh [8], AtlasNet
[3], and OccNet [5]. All of these approaches to 3D recon-
struction use explicit 3D representations and because of this
suffer from problems such as limited resolution and fixed
mesh topology. Implicit representations provide an alter-
native representation to overcome these limitations. It was
shown in DeepSDF [6] that a neural network SDF can ef-
fectively represent a 3D shape, so the authors of DISN used
a signed distance field to represent the 3d shape implicitly.
Additionally models before DISN only used a global fea-
ture representation that is they encode the image to a single
feature then decode that vector to build the 3D shape. The
authors of DISN proposed the use of local features in com-
bination with global features to allow their model to focus
on the local structure.

3. Method and Architecture

Since we’re re-implementing DISN [10] in PyTorch, we
follow similar steps in setting up our neural network to per-
form feature extraction and SDF prediction.

3.1. DISN

The overall architecture of the network is shown in Fig-
ure 1. We take in sample points and an RGB image to per-
form feature extraction. After using the encoders: ResNet
[4] for the image, and PointNet [7] for the points, we con-
catenate the features, then put it through the decoder pre-
dicting the SDF values. After obtaining the predicted SDF
values from the model, we use marching cube to reconstruct
the 3D mesh.

Global
Features
\ Encoder ——> Decoder
v
v Feature Maps pgjnt Features
Estimated Local SDF

Camera Features
Pose . Decoder

MLPs ——

p(x,y,2) Point Features

Figure 1. Given a point, an image and estimated camera pose, we
project the point onto the image plane. DISN uses local features at
the projected position, the global features, and the point features to
predict the SDF of p. "MLP’ denotes multi-layer perceptrons.[10]

3.2. Data

The dataset to train our model is based on ShapeNet [1],
but has been modified since ShapeNet only contains meshes

while for training our model we need an SDFs, images, and
poses. The SDFs are created from the ground truth mesh,
and for the dataset we pre-sample 2,048 points near the sur-
face of the object so that sampling the ground truth SDF
is not a bottleneck during training. Then to get the im-
ages, which are the input to the model, we render 24 im-
ages of each mesh in ShapeNet from random camera poses
and record the poses. This way for each training sample
we have an image, the camera pose, the point samples and
the ground truth SDF values. These are all the components
needed to train.

3.3. Feature Extraction

Before estimating the SDF values for 3D reconstruction,
the network needs to extract image features and point fea-
tures. We utilize a pre-trained ResNetl18 model to extract
image feature from the image instead of the VGG-16 net-
work used in the original DISN[10].

We picked ResNet instead of VGG because of its higher
accuracy with less parameters and flops through layer de-
sign and the use of skip connections in their residual archi-
tecture. Due to time constrain, we focused only on one cat-
egory, the chair category, from ShapeNet[1], instead of the
13 categories done in the original paper[10]. We loaded a
pre-trained ResNet model and fine tuned it during our train-
ing procedure.

From each image batch, we extracted both global and lo-
cal features, where the global features provide the general
shape of the mesh and local features provide information
on the detailed parts, like the arm and legs of a chair. The
global features are from the last feature layer, the average
pooling layer of ResNet, while the local features are taken
from the output of every residual block, so different levels
of detail can be obtained. To extract the local features for
a sampled point, we project the point onto the image us-
ing the camera intrinsic and extrinsic parameters (i.e. focal
length, pose). The projected point is used to select the lo-
cal feature at each layer of the ResNet, then concatenated
together to create a hyper feature. Then for every point we
run it through a MLP to extract point features.

Finally the global and local features in combination with
the point features go into their respective MLP decoders.
The output of the two decoders is added together to produce
the final SDF prediction.

In addition to the above setup that closely follows [10]’s
architecture. To better understand the effectiveness and dif-
ferences of including local features, we had set up pipelines
to train three different models using our network. We
trained a model with only global features, only local fea-
tures, and of course a model with both local and global fea-
tures. We trained each model 100 epochs using GeForce
RTX 2080 Ti. For 100 epochs it takes roughly 3 days of
training per model. At the time of this paper, we’re only

Global Features

B g —

Local Features
y N = s

‘ Concat

Figure 2. Local feature extraction. Given a 3D point p, we uses
the estimated camera pose to project p onto the image plane. Then
we get the projected locations of p on each local feature map layer.
We concatenate the features at each layer to get the local features
of p. [10]

able to train the local feature only model through 75 epochs
after two days of training.

4. Experiment
graphicx egbib.bib

1. Implementation Details
After making an SDF prediction using 257° grid
points, we applied a marching cube algorithm based on
these SDF values, normalize and center the generated
mesh. At this point, there are small fragments that are
not part of the chair. We cleaned the fragments and re-
normalized the object, just like the original paper[10].

2. Evaluation Metrics
According to the original DISN paper[10], we defined
the following three metrics for measuring the perfor-
mance: (1) Chamfer Distance, (2) Earth Mover’s Dis-
tance, and (3) F-1 Score. Here, PC and PCp are the
sampled point clouds from the predicted and ground-
truth mesh.

(a) Chamfer Distance

CD(PC,PCr)= Y min_|p1 —pol3

: _ 2
Jin fIp = pells

p>

p2€PCr

(b) Earth Mover’s Distance

EMD(PC,PCr) = min pEZPC lp=¢®)ll2

where ¢ : PC — PC’r is a bijection (one-to-one
matching).

(c) F1 Score

i. Boundary: To calculate precision and recall,
as stated below, we need a boundary for each
object. We first get the candidates for the
boundary by subtracting the minimum point
from the maximum point per axis. After get-
ting a candidate per axis, we take the largest
value, and this becomes the boundary.

ii. F1 Score:

F—2 Precision - Recall

" Precision + Recall

iii. Precision: Ratio of generated points,
whether their closest points from the ground
truth samples are within a threshold.

iv. Recall: Ratio of ground truth points,
whether their closest points from the gener-
ated samples are within a threshold.

3. Quantitative Analysis
Here we picked seven randomly sampled chairs from
the test dataset. For example, we have test objects
0100 to 1150. Using the three metrics that we have
shown above, we computed the score of each object.

(a) F1 Scores with Local+Global Feature

1% 2% 5% 10% | 20%
Ours 0.034 | 0.213 | 0.886 | 0.997 | 1.000
Theirs 0.035 | 0.234 | 0.836 | 0.993 | 1.000
Ours 0.013 | 0.075 | 0.456 | 0.964 | 1.000
Theirs 0.014 | 0.109 | 0.754 | 0.977 | 0.997
Ours 0.099 | 0.464 | 0.995 | 1.000 | 1.000
Theirs 0.121 | 0.558 | 0.997 | 1.000 | 1.000
Ours 0.031 | 0.207 | 0.835 | 0.992 | 1.000
Theirs 0.021 | 0.144 | 0.779 | 0.973 | 1.000
Ours 0.023 | 0.148 | 0.587 | 0.986 | 1.000
Theirs 0.020 | 0.142 | 0.642 | 0.983 | 1.000
Ours 0.044 | 0.282 | 0.794 | 0.964 | 0.998
Theirs 0.055 | 0.319 | 0.955 | 1.000 | 1.000
Ours 0.012 | 0.099 | 0.549 | 0.941 | 1.000
Theirs 0.025 | 0.156 | 0.769 | 0.959 | 0.994
Average | 0.036 | 0.212 | 0.728 | 0.977 | 0.999
0.041 | 0.237 | 0.818 | 0.983 | 0.998
(b) Chamfer Distance
Test Object | Local | Global | Local+Global | Theirs
0100 9.56 | 12.35 9.60 10.89
0201 16.07 | 16.45 25.04 16.18
0300 4.40 4.34 3.96 3.50
0400 12.84 | 16.17 10.27 14.75
0500 16.20 | 15.41 17.34 15.96
0550 17.96 | 13.84 18.86 7.49
1150 26.98 | 29.14 23.60 16.93
Average 14.85 | 15.38 15.52 12.24

(c) Earth Mover’s Distance

4. Feature Comparison

Test Object | Local | Global | Local+Global | Theirs
0100 166.74 | 167.62 165.29 172.92
0201 186.80 | 200.02 221.51 205.03
0300 126.12 | 109.47 108.83 107.20
0400 217.58 | 222.34 194.50 236.00
0500 194.82 | 216.64 199.67 183.27
0550 176.87 | 168.63 180.81 147.89
1150 240.26 | 243.54 237.28 208.73

Average 187.02 | 189.75 186.84 180.14

Gold Mesh

Local

Global

Local + Global

5. Qualitative Analysis

Gold Image Gold Mesh DISN,y;s

~ ~ ~

» »
~ ~
. -
~ Sy
» »
P P
N |

5. Discussion

Our results are slightly worse than the original paper’s
results, this is likely due to training time. Since we wanted
to compare different models and only had one GPU avail-
able, we could only train our model for 100 epochs which
is about 1/10 of the training time or their model. That being
said we have comparable results.

When comparing our local feature only and global fea-
ture only models to the combined local and global feature
model. We can see that the two restricted models perform
worse overall. This shows that not only does adding local
features improve the accuracy, but local or global features
alone do not perform as well as the combination of the two.

6. Conclusion

We had successfully implemented a PyTorch version of
DISN. Even though our overall results perform slightly
worse than the original paper, we had more limitation in
resources yet achieve comparable results. We also showed

DISNtheirs

the importance of the combination of local and global fea-
tures. There are several things we could try to improve our
results. First of all, we can train our model with more train-
ing data and fore a longer time, using all 13 categories’ and
training for more epochs. Trying out different loss function
could also improve our result, since currently we only use a
simple L1 loss to train our network. Adding something like
Eikonal regularization to enforce a consistent SDF, could
potentially also improve accuracy.

References

[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 2

[2] Haogiang Fan, Hao Su, and Leonidas J. Guibas. A point
set generation network for 3d object reconstruction from a
single image. CoRR, abs/1612.00603, 2016. 1

[3] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. Atlasnet: A papier-
maché approach to learning 3d surface generation, 2018. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 2

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space, 2019. 1, 2

[6] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation,
2019. 2

[7] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation, 2017. 2

[8] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images, 2018. 2

[9] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich
Neumann. 3dn: 3d deformation network, 2019. 2

[10] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 492-502. Curran As-
sociates, Inc., 2019. 2, 3

[11] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3d object reconstruction without 3d supervision, 2017.
1

