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Abstract

We present a rapid (minimal human-in-the-
loop supervision) data augmentation frame-
work that improves the performance of nat-
ural language processing models in low re-
source settings. To augment data for a par-
ticular downstream task, we use DepCC, A
Dependency-Parsed Text Corpus from Com-
mon Crawl. First, we filter the Common Crawl
file using queries extracted from the down-
stream task’s training set and retrieve relevant
domain data using the BM25 retrieval algo-
rithm. After getting the relevant data, we ob-
tain dense embeddings using BERT. We ap-
ply K-nearest-neighbors to these dense embed-
dings to retrieve sorted candidate augmenta-
tion data for each query. Lastly, we label the
candidate augmentation data using one strat-
egy: a simple label propagation technique of
assigning the same label as the query. To ex-
amine the effectiveness of this framework, we
perform augmentation experiments on three
downstream classification tasks from three do-
main: computer science, news, and BioMed.
We find in our experiments that our data aug-
mentation framework improves held out test
performance.

1 Introduction

State-of-the-art natural language processing mod-
els despite proving superhuman performance on
benchmark datasets (Devlin et al., 2019), are far
from true natural language understanding. These
models’ brittleness can be demonstrated in numer-
ous ways: by utilizing simple rules, we can create
examples that can cause trained models to fail and
methods that exploit model confidence can be used
to generate nonsensical adversaries (Ribeiro et al.,
2018). Modern techniques, when combines with
manual efforts, have been used to generate exam-
ples on which production models fail (Ribeiro
et al., 2020).

Such issues are more pronounced in cases when the
training data is scarce. Creating small training sets
is a common practice when developing domain-
specific models such as building a business grade
conversational system (Coucke et al., 2018). In
such scenarios, the developers have to construct
their own training sets which is costly and can in-
troduce undesired artifacts.
One family of approaches used to tackle model
brittleness (in scarce data scenarios) is data aug-
mentation. Data augmentation refers to the mecha-
nism of adding additional examples to the training
set. When the model is trained on the augmented
dataset, the hope is that the model is less prone
to failure than had it been trained on the original
dataset. Data augmentation techniques in NLP
have enjoyed success but they are often specific
to particular types of model failures and thus may
require significant manual labour.

1.1 Task Description

Our goal in this project is to develop a new frame-
work for rapid data augmentation that improves
the performance of NLP models in low resource
settings.

1.2 Motivation and Limitations of Existing
Work

Although recent advances in natural language pro-
cessing have led to the development of models that
achieve superhuman performance on benchmark
datasets, they are far from truly understanding lan-
guage. For example, models are self-contradicting,
fail in the presence of noise, and incorrectly pro-
duce different predictions on semantically similar
inputs.
Data augmentation is one of a family of approaches
that can be leveraged to address these issues. There
have been prior studies done that applied data aug-
mentation techniques to improve model robustness



(see the ”Related Work” section below for more de-
tails). While augmenting a training set with exam-
ples of a specific type has been shown to improve
model performance on examples of a particular
kind, there is a dearth of understanding about what
are the other downstream effects of data augmen-
tation (whether and when can it improve perfor-
mance on examples of different types) (Kaushik
et al., 2020), (Min et al., 2020).
This observation motivates our work in better char-
acterizing downstream effects of data augmentation
for deep NLP models and developing new tools for
rapid data augmentation to improve model robust-
ness.

1.3 Technical Challenges that you faced in
the project

Some of the challenges that we’d faced in this
project include:

1. Size of Common Crawl: The main challenge
faced in this project is the size of Common
Crawl. Compressed, it encompasses 400 GB.
Building a Solr index on all of Common Crawl
took approximately 2 months. Even after in-
dexing all of Common Crawl data, performing
retrieval from all of the 365M web documents
sometimes results in the Gypsum jobs getting
killed due to exceeding disk quotas. Given
this, we required to present augmentation re-
sults on a subsampled version of Common
Crawl data comprising 35M web documents

2. Making the framework end-to-end: Trying
to connect the pipelines for retrieval from
Common Crawl and processing the retrieved
Common Crawl data for augmentation in or-
der to make the overall augmentation pipeline
end-to-end was another technical challenge
that was faced in this project.

1.4 Contributions of your project

Some of our contributions of our project are as
follows:

1. Developed a general framework for rapid data
augmentation that requires minimal human-
in-the-loop supervision

2. Presented two augmentation strategies using
our augmentation framework that results in
improvement of held out test performance for
a deep NLP model in low resource settings

2 Related Work

There have been some prior studies of data augmen-
tation in NLP. Work by (Min et al., 2020) explored
several methods to augment standard training
sets with syntactically informative examples
generated by applying syntactic transformations
to sentences from the MNLI corpus. Their work
reported improvements that generalized beyond a
particular construction used for data augmentation
which suggests that their augmentation technique
caused the deep NLP model (BERT) to recruit
abstract syntactic representations. Some work
demonstrates that augmenting a training set
with counterfactual examples improves classifier
performance especially on counterfactual test
examples. Neural language models have also been
employed to create new training examples by
replacing tokens in original training instances.

Work by (Li et al., 2020) tackled the prob-
lem of pretrained lanuage models that, though
performs well on in-distribution test sets, their
performance suffers on out-of-distribution test sets.
Their method of data augmentation involves in
linguistically informed syntactic transformations
that automatically generate desired contrast sets.
Applying this technique to augment training data
improves models’ performance on such contrast
sets without affecting performance on the original
data.

This work by (Kaushik et al., 2020) showed that
classifiers that are trained on original data fails on
counterfactually-revised data and vice versa. Also
spurious correlations in these datasets are picked
up by even linear models. However on augmenting
the revised examples, these picked up correlations
are broken up.

This work by (Kobayashi, 2018) presented
a data augmentation technique for labeled
sentences called contextual augmentation. A
neural language model is employed that, for a
given sentence, replaces words with other words,
thus resulting in the generation of new training
examples. This method of data augmentation
improved the performance of CNN/RNN based
classifiers.
Unlike these works, our proposed method of
augmentation specifically considers the model’s
encoding of the training set.



Figure 1: Augmentation Framework

3 Model

This section describes the details about the augmen-
tation framework

3.1 Step I: Achieving baseline performance
on target task

3.1.1 Data-Scarce Domain
We start off with the low resource (meaning that
the training set contains a small set of examples)
domain in which an NLP model will be trained to
do a downstream task (in this case, classification).

3.1.2 RoBERTa classifier
An off-the-shelf deep NLP model such as
RoBERTa would be finetuned for performing down-
stream classification task in the domain

3.1.3 Baseline Performance
After finetuning RoBERTa, it is then evaluated on a
held out test set and this would serve as the baseline
performance that has been achieved by RoBERTa
in the target task

3.1.4 Queries
Based on the baseline performance achieved by
RoBERTa in the target task, queries from the train-

ing set are extracted that would be used for retriev-
ing relevant Common Crawl data

3.2 Step II: Retrieving from Common Crawl

3.2.1 Information Retriever
The queries that were generated in the previous
step would then be fed into an Apache Solr based
information retrieval system that, for each query,
would return relevant web documents from Com-
mon Crawl. The retrieval system used in Solr is a
BM25 scoring method. We have indexed all of the
365M documents in Common Crawl using Solr.

3.2.2 Unlabelled CC Documents
Solr returns a set of unlabelled CC Documents for
each query.

3.3 Step III: Processing Retrieved Common
Crawl Data

3.3.1 Unlabelled Common Crawl
Sentences/Passages:

The retrieved Common Crawl web documents by
Solr needs to segmented into sentences/passages.
We use spaCy tool that does segmentation of these
web documents into coherent sentences/passages.



The size of the sentences/passages required is de-
cided by computing the average sentence/passage
length as seen in the training data.

3.3.2 Process: K Nearest Neighbour Search

Here, we apply k nearest neighbour search that
would sort the list of unlabelled Common Crawl
sentences/passages by descending order of rele-
vance for each query. We use dense embeddings
from BERT of the query and its corresponding
list of retrieved sentences/passages as input to the
KNN algorithm and a Euclidean distance metric
for achieving the ranking.

3.3.3 Sorted & Unlabelled Common Crawl
Sentences/Passages

The KNN search algorithm applied in the previous
step would return for each query, a list of Com-
mon Crawl sentences/passages that are sorted in
descending order of relevance. However at this
stage, we’re still dealing with unannotated Com-
mon Crawl data.

3.4 Step IV: Labelling and Augmentation

3.4.1 Process: Label Common Crawl Data

Here we describe one unsupervised approach to-
wards labelling Common Crawl Data:

1. Use the same ground truth label of the query
(from the training set) as pseudo for its corre-
sponding set of retrieved & sorted Common
Crawl sentences/passages

3.4.2 Sorted & Labelled Common Crawl
Sentences/Passages

Applying one of the two labelling strategies from
the previous step results in, for each query, a list of
sorted and labelled Common Crawl sentences/pas-
sages.

3.5 Augment Training Data

For each query, we select top K ”least distant” Com-
mon Crawl sentences/passages and augment the
target task training data with it

3.5.1 Retrain and Re-evaluate

After augmenting the training data the final step
is to simply retrain the RoBERTa classifier on the
augmented training data and re-evaluate its perfor-
mance on the held out test set

3.6 Training

In terms of finetuning RoBERTa to perform down-
stream classification in the target domain, the hy-
perparameters we chose include:

1. Number of epochs: 10

2. Patience: 3

3. Batch Size: 16

4. Learning rate: 2e-5

5. Dropout: 0.1

6. Number of feedforward layers: 1

7. Feedforward non-linearity: tanh

8. Number of classification layers: 1

4 Experiments

4.1 Datasets

There are two categories of datasets that we used
in this project.

4.1.1 Datasets for Classification Tasks
From the CS domain, we chose ACL-ARC (Jur-
gens et al., 2018) dataset for a citation intent classi-
fication task, from the BioMed domain, we chose
RCT (Dernoncourt and Lee, 2017) for a sentence
classification task in abstracts of randomized con-
trolled trials and from the News domain, we chose
HYPERPARTISAN (Kiesel et al., 2019) for a hy-
perpartisan news detection task. The reason for
selecting each of these tasks is that we wanted
to demonstrate how augmentation from Common
Crawl can help augment training sets from differ-
ent domains due to the diversity of data one would
expect from Common Crawl.
A point to note: the citation intent classification and
hyperpartisan news detection are by nature tasks
in low resource settings (as seen in their size of
training sets). However, this wasn’t the case for the
RCT dataset. Hence for the experiments, we sub-
sampled RCT to 500 training examples and called
it ”RCT-sample.”

4.1.2 Dataset for Common Crawl
For augmentation, we used DEPCC, a sanitized
version of Common Crawl. It consists of 365 mil-
lion documents that in total consist of 14.3 billion
sentences.



Domain Task Label Type Train Dev Test Total

BioMed RCT abstract sent. roles 180040 30212 30135 240387

CS ACL-ARC citation intent 1688 114 139 1941

News Hyperpartisan partisanship 515 63 64 642

Table 1: Details on the domain specific datasets for classification tasks

4.2 Augmentation Strategy
Here’s one data augmentation strategy that we
experimented with (regarding the pipeline as de-
scribed in Section 3)

1. Strategy 1 (Abbreviated as ”S1”): The queries
to the Solr retrieval engine being all the train-
ing examples from the training data of the tar-
get task. The labeling strategy applied here is
essentially applying the same ground truth la-
bel as the query for generating pseudo labels
its corresponding set of retrieved Common
Crawl sentences/passages.

4.3 Massive Augmentation
Using Strategy 1, we augment the data based on the
maximum distance between the dense embedding
of the original query and retrieved passages. In
short, we add every passage whose distance is less
than a threshold. Figure 2, 3, and 4 shows the
size of the training data after augmentation. The
x-axis corresponds to the maximum distances, and
the y-axis the size of the training data. We trained
each model five times and calculated average and
standard deviation.
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Figure 2: ACL-ARC Augmentation Size
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Figure 3: Hyperpartisan Augmentation Size
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Figure 4: RCTsample Augmentation Size

4.4 Fixed-size Augmentation
We also defined another augmentation using a small
amount of retrieved data. We fix the number of aug-
menting data. For example, if we have 1000 train-
ing examples, we pick 30 examples from the re-
trieved data and add them to the training set. Again,
we trained and tested each model five times.
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Figure 5: Massive Augmentation

ACL-ARC
Hyperpartisan
RCT-sample

Average F1 Score (Standard Devation)

Dist ACL Hyper RCTsample

Base 64.19(± 2.02) 89.26(± 5.47) 72.65(± 0.77)
24 65.77(± 7.40) 92.68(± 3.29) 69.33(± 0.73)

26 66.79(± 3.07) 90.63(± 5.92) 67.31(± 1.96)

28 63.93(± 3.67) 92.66(± 4.39) 63.91(± 1.25)

30 62.57(± 2.70) 89.60(± 5.04) 60.43(± 0.64)

32 64.83(± 5.28) 90.15(± 5.22) 57.23(± 1.27)

34 57.06(± 3.05) 88.36(± 3.26) 54.36(± 1.31)

36 56.20(± 4.21) 89.49(± 2.40) 52.76(± 0.85)

Table 2: Massive Augmentation
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Figure 6: Fixed-size Augmentation

ACL-ARC
Hyperpartisan
RCT-sample

Average F1 Score (Standard Devation)
Data # ACL Hyper RCTsample

Base 64.19(± 2.02) 89.26(± 5.47) 72.65(± 0.77)
1 65.28(± 5.05) 89.12(± 7.31) 71.65(± 1.97)
2 64.71(± 3.61) 90.74(± 3.94) 71.20(± 0.99)
3 66.73(± 3.72) 90.94(± 4.54) 72.04(± 0.20)
4 65.26(± 3.20) 92.64(± 4.59) 72.27(± 1.31)
5 65.80(± 3.10) 93.28(± 2.62) 71.68(± 0.71)
6 65.39(± 4.23) 89.11(± 5.22) 71.96(± 0.87)
7 63.25(± 2.51) 89.90(± 4.97) 71.78(± 1.07)
8 65.81(± 2.13) 87.84(± 6.20) 71.75(± 0.66)
9 66.85(± 6.14) 91.23(± 2.50) 71.77(± 0.97)
10 62.68(± 3.29) 91.54(± 4.01) 71.32(± 0.54)

Table 3: Fixed-size Augmentation

4.5 Main Results

1. Massive Augmentation
Figure 5 and Table 2 shows that massive aug-
mentation improves performance on ACL-
ARC and Hyperpartisan at the beginning.
F1 score of ACL-ARC and Hyperpartisan
achieve 66.79% and 92.68%, respectively.
However, the performance deteriorates as we
add more data.

2. Fixed-size Augmentation
As in figure 6 and Table 3, ACL-ARC dataset
achieves 66.85% when augmenting the 9th
dataset. For Hyperpartisan, adding 5th dataset
performs the best(93.28%). Again, augment-
ing RCTsample did not improve F1 scores.

4.6 Analysis

1. Massive Augmentation
Figure 5 and Table 2 show the F1 scores of
three datasets after augmenting data with the
maximum distance metric. The F1 score of
ACL-ARC and Hyperpatsan News improves
up to a certain point and deteriorates after. For
RCTsample dataset, it keeps decreasing. We
believe that the common crawl dataset may
not be a good choice for augmenting BioMed
data.

2. Fixed-size Augmentation
We’ve shown that massive augmentation may
not be beneficial for improving the F1 score.
Therefore, we hypothesized that a small num-



ber of data could improve the F1 score. For
Figure 6 and Table 3, we only augment only
3% of the training set. The result clearly
shows that the distance to the original query is
not the defining factor for achieving the best
F1 score.

3. RCTsample

A reason why S1 didn’t outperform the base-
line in the RCT is probably that the 35M sam-
pled Common Crawl (which was used for aug-
mentation) didn’t contain much data from the
BioMed domain.

4.7 Qualitative Analysis
We examine a closest and farthest passage from
a given query from citation intent classification
task. It is evident that the closest passage has
a similar structure, including topic, author, and
publishing year as the query. Assigning the same
class(”background”) contributes to the model’s
high performance with this augmented data. How-
ever, the farthest passage is more like a product
description or an advertisement.

• Query

Thus , over the past few years ,
along with advances in the use of
learning and statistical methods for
acquisition of full parsers ( Collins ,
1997 ; Charniak , 1997a ; Charniak
, 1997b ; Ratnaparkhi , 1997 )...

• Closest passage

It is local , yet can handle also com-
positional structures . ... full parse
of free - text sentences ( e.g. , Bod (
1992 ) , Magerman ( 1995 ) , Collins
( 1997 ) , Ratnaparkhi ( 1997 ) , and
Sekine ( 1998 ) )

• Farthest passage

Festival Speech Synthesis System :
From the Centre for Speech Tech-
nology Research at the University
of Edinburgh .Festival offers a gen-
eral framework for building speech
synthesis systems ...

5 Conclusion and Future Work

Some of the future work that we’re currently pur-
suing for this project include:

1. Achieving diversity in data augmentation:
Perturbation of queries using a paraphrasing
model could be a technique to achieve diver-
sity in augmentation

2. Performing retrieval from all of Common
Crawl Data (365M Web documents)

3. We are currently experimenting with an-
other unsupervised approach towards la-
belling unannotated Common Crawl data -
using the baseline RoBERTa classifier to gen-
erate pseudo labels (inspired by Self-Training
techniques utilized by (Xie et al., 2020)
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